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DIFFERENTIAL EQUATIONS OF HEAT CONDUCTION IN A DISPERSE SYSTEM
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A system of differential equations is proposed for the description of
unsteady heat conduction in disperse systems. A solution is derived for
boundaiy conditions of the 1st, 2nd, and 3rd kind.

It is well known that in the theory of heat conduction
and heat transfer in disperse systems, in addition to
the different model representations that take account
of the dispersion of the medium [1, 2], there is a ten-
dency to use the ideas and the mathematical apparatus
of the theory of single~-phase continua [3-6].
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Fig. 1. Temperature of plate

surface: 1) when cooled in

air; 2) when cooled in a bed
(T in sec).

The first route has led to a series of simplified
relations which permit a qualitative estimate of heat
transfer, while the second is also used to obtain design
relations.

Harakas and Beatty [7] have shown that in the region
from steady heat transfer up to a certain value Fopin
(which has been determined only in isolated cases),
the use of the heat conduction differential equation for
a continuum gives results in agreement with experi-
mental data.

For values of Fo < Fo,,ip, the deviation between
experimental data and theory becomes larger as Fo
diminishes. To obtain agreement between experimental
and theoretical data when 7—0, use was made of the
idea proposed earlier in [1] that there exists a gas
sublayer between the heat transfer surface and the
first row of particles, the thermal resistance of the
sublayer being assumed to be approximately indepen~
dent of time. Then the heat flux at any time is deter—
mined by the sum of the thermal resistances:

RK = R(}_) _‘_ R‘U'

In the differential equation of heat conduction for a
continuum the value of thermal conductivity used is

that measured under steady conditions (Agff) . When
T—0 R(7) tends to zero for the continuum for this
choice of the value of R(j) we may secure agreement
between the experimental and theoretical heat flux val-
ues by choice of the thickness 6 of the gas sublayer.
By the use of this kind of artificial means we may
achieve some measure of agreement between experi-
ment and theory, but physically this method is poorly
based. It is difficult to answer a number of questions,
namely: why is it only the first row of particles that
is allotted the thermal resistance R(y), why is it con-
sidered that the thermal resistance of the sublayer is
steady, and whether there is not a considerable dis-
crepancy, nevertheless, between theory and experi-
ment when we attempt, by this arbitrary means, to
secure agreement at a certain T between experimental
data and theory by choice of some 6. and so on.

There has been an attempt to allot all the particles
in the layer to the thermal resistance [4], but then the
approximate heat transfer model is illustrated by an
approximate solution of the system of equations, as
a result of which the reliability of the relations ob-
tained is insufficient for a complete qualitative and
quantitative analysis.
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Fig. 2. Model of the volume element
for a disperse system.

Figure 1 shows results of measurement of cooling
rate of a copper plate measuring 100 X 45 X 1 mm in a
bed of 3-mm particles of lead glass and in air; the
results show that, in contrast with the case for a con-
tinuum, the heat transfer coefficient depends on time,
and, consequently, Newton's law of cooling cannot be
applied to the disperse medium as a whole. The diver-
gence of the test data from theory at small Fo [7] also
does not permit the Fourier law to be applied to a
disperse medium. However, since both the Fourier
law and Newton's law undoubtedly are valid for each



JOURNAL OF ENGINEERING PHYSICS

of the "continua® individually, we shall use them for
derivation of the differential equations of heat con~
duction of the system.

We shall examine two volume elements (Fig. 2),
separated by an unknown thermal resistance. For each
volume element, in the condition Rpp —=, for a one-
dimensional problem, the relations
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are valid.
In the case when g, and @, are equal, t;=t,, and for

any R ph the system may be regarded as a homogeneous
contmuum In all other cases it should be supposed
that the component volume element has two tempera-
tures (t; and t) . In this case we may write
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It is then assumed that heat transfer between phases
follows Newton's law (8 =aSAcy)y), an assumption
that places a restriction on Egs. (3) and (4), but this
restriction will evidently not be appreciable when we
are considering finely dispersed systems. Thus, for
heat conduction in a bed, the mutual influence of the
phases manifests itself in the fact that the medium
with the smaller thermal diffusivity slows down the
development of the temperature field of the medium
with the larger diffusivity, the degree of interaction of
the media being determined by the difference in the dif-
fusivities of the media and by the intensity of heat
transfer between the phases. Thus, for example, if
the diameter of the particles of the disperse phase of
the material is very small, the link between the tem-
perature fields is large, so that in the limit when d —
-0, @S+ and At = {,~ t;) — 0 the disperse mate-
rial may be considered continuous. With increase of
particle diameter and increase in the difference of the
diffusivity of the phases, on the other hand, At in-
creases, which allows the use of Egs. (3) and (4) to
describe the heat conduction in a disperse system,
with good justification.

A solution is given below of the system of differen-
tial Eqs. (3) and (4) with the following initial and
boundary conditions:

tl\r:O = tz\t:O = t0y (5

( ‘%I+le+c) -0, (6
x==)

( 951+qu +c>l' —o, 0
x=0

tllsz == t2|x=R = 1. (®

We shall seck a solution in the form of the sum of the
steady and unsteady solutions, i.e.,

t(x, 7) =1, {x) + v, (x, 1), (9
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ty (%, ) = B (1) + 0, (6 O a0

Assuming in Eqs. (6) and (7) that A;= A,=0, B;= By=
=1, C;= Cy= —tyw, and applying a finite Fourier sine
transformation with respect to x and a Laplace trans-
formation with respect to 7 to Egs. (3} and (4) in
succession, we obtain the following expressions for
the temperature field in the gas and solid phases:

t(x, 1) = t(’ittw-(u 4+

R
2(llo'“tw) Z

X [(Dy~+ Pyyexp (P, ) —
— (D, + Py) exp (P, 7)] sin (p, %),

—Pl)

(11
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2 (to_tw) w‘l §2
+ X
R éﬂn (Py—Py)

[ D, +P,
Ane) + P,

exp (P, 1) —

— Dt P

(12)
Aniy + Py

exp (Py7) ]sin (11, X),

where un are the roots of the characteristic equation
sin{p, Ry=0 (13)

and
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For the case ¢;= 0 and ty = 0 the problem is simplified
considerablv. A detailed solution for this case has been
given in [8].

In a similar way we shall obtain a solution of the
system (3) and (4) for boundary conditions of the sec-
ond kind, by putting A;= A, A=Ay By= B,=0, C;=
= qq, Cy= q and applying successively a Fourier co-
sine transformation with respect to x and a Laplace
transformation with respectto 7, i.e.,

2q, - 1
Ly X
RME p2 (P — Py)

n=1

4ix, T)—fo+ (R x) —
X P, + C,) exp (P, 7). — (Py + C,) exp (Py v)] cos (y, x),
2q2 . i

R, E WP —Py)
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£, (x, ©) =1, + (R xX)—

exp (P17) ]cos (pox), (15

where p, are the roots of the characteristic equation

cos (p, R) =0 (16)



302

and
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2
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A, =(@p2+B8) + (e P-i + B.),
B, = (a P«,ii + B1) (@ P«f. + B2) — Biba,
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To solve the problem with boundary conditions of the
3rd kind, we must put A; = B; =0; Ay = 1;
By =— .i? Co=

ha 2

a
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in Egs. (6) and (7).
Carrying out the appropriate integral transforma~
tions, as above, we obtain the solution in the form
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where u, are the roots of the characteristic equation

i, €os (1, R) + }ii sin (u, R) = 0, (19)
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An =a, ”,-: -i ﬁl 'i" 62- Bu =4a, l-l,_,’ 61'
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NOTATION

Rk is the total thermal resistance of bed; Ry is
the thermal resistance of gas sublayer between first
row of particles and heat transfer surface, this resis-
tance being independent of time; R(y) is the thermal
resistance of bed; Rpp is the thermal resistance to
heat transfer between phases; Agff is the effective
thermal conductivity of bed; § is the thickness of gas-
eous sublayer; S is the surface area of particles in
unit volume; « is the coefficient of heat transfer be-
tween particles and gas; ¢ is the coefficient of heat
transfer between bed and medium; d is the diameter
of particles; R is the interval length; t, is the tem~
perature of solid; t, is the temperature of gas;  is
the initial temperature of bed; ty is the wall tempera-
ture (at the boundary x = 0); ty, is the temperature of
medium; ¢ is the excess temperature of plate surface;
A is the thermal conductivity of bed; A, is the thermal
conductivity of medium; 7 is the time.
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